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Synopsis 
Equations are derived to predict the onedimensional behavior of a hyperbolic tangent 

fluid model flowing between calendering rollers. The equations were solved numerically 
on a computer, and results were obtained for maximum roller pressure and the exit thick- 
ness of the fluid sheet as a function of roller speed and reservoir size for three polymers. 
The numerical integration employed Gauss-Legendre quadrature and a cascading itera- 
tion scheme to solve equations in which unknowns appeared in the limits of the integrals. 
Unlike existing power law solutions, these results show a definite relation between roller 
speed and exit thickness. 

INTRODUCTION 

In the past thirty years, there have been numerous attempts to analyze 
fluid flow between rotating cylinders, or “calendcring.” Calendering is a 
steady-state process, common to the plastics industry, by which softened 
material is squeezed into thin sheets by one or more pairs of driven rollers’ 
(see Fig. 1). The analyses of these related problems have dealt with vis- 
cous Newtonian2 and non-Ncwtonian fluids2 having flow properties approx- 
imated by various constitutive models. 

Chong3 reviewed previous work and considered calendering of non-New- 
tonian power law fluids. He indicated that the use of a power law model is 
limited and the accuracy of solutions based on this model may suffer as a 
result. More sophisticated models exist but, because they are complex, a 
more tractable substitute for the power law is still needed. 

The goal of this work was to discover a better non-Newtonian fluid model, 
derive the equations relating to the behavior of that fluid between calender- 
ing rollers, and to solve these equations for exit thickness and roller forces. 

Put in very specific terms, the present objective is to find the sheet thick- 
ness a t  the exit from the rollers (hl) and the maximum fluid pressures as a 
function of reservoir height ( H ) ,  minimum roller separation (H,,), roller sur- 
face speed (U), and fluid properties. These symbols are identified in the 
illustration of the system model, Figure 2. 
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Fig. 1. The calendering process. 

Fig. 2. Symmetrical calendering rollers showing symbols used in analysis. 

THE HYPERBOLIC TANGENT MODEL 

The fluid in question is assumed to be a pseudoplastic and to have the 
following characteristics: (1) It is non-Newtonian. The shear stress, 7, 

can be expressed for the one-dimensional case as 

7 = ?($) = q*j 

where q is the apparent viscosity and + is the shear rate; (2) q decreases 
with increasing +; (3) first and second Newtonian viscosities are evident. 
(In Newtonian fluids q is constant. For the polymers considered, q 
approaches a constant for small y ,  and a second, smaller constant for large 
I. The viscosity in these flat regions will be referred to as the first and sec- 
ond Newtonian viscosities, respectively.) 

It is possible to measure q for non-Newtonian fluids as a function of y.  
This was done (using Rotovisko and Burrell viscometers) for several poly- 
mers of interest to the problem. Graphs of these data are shown in Figure 
3. 
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Fig. 3. Rheograms of three polymers. 

The power law model, 
r) = k($ln-l 

where n and k are constants, fails to show curve fluctuations typical of some 
families of pseudoplastics. A single power law approximation would ap- 
pear as a straight line on the log-log coordinates of Figure 3. 

However, these viscometer data can be fit conveniently by a curve having 
the form 

r) = A - B tanh - (3 (3) 
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Computations were made for the three fluids under consideration. The 
computed* constants for the three fluids, designated A, B and C were 

n k A B 
~ - - 

fluid A 0.25 3.90 8000 7965 
fluid B 0.29 6.70 2700 2678 
fluid C 0.35 15.10 850 838 

All computations were made on a Control Data 3600 computer using 
time sharing. 

DERIVATION 

A.hydrodynamic analysis of calendering will now be developed beginning 
with the Gaske11.2 method for general non-Newtonian flow and concluding 
with the equations for maximum pressure and film thickness using the tanh 
model. The value of knowing the maximum pressure can be illustrated by 
observing the typical experimental pressure profile shown in Figure 4.' 
Given the maximum pressure and inlet and exit points on the rollers, this 
curve can be estimated and integrated to give roller forces. 
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Fig. 4. Typical pressure profile for fluid between calendering rollers (see ref. 1). 

Considering the flow to be two-dimensional, the equation for the x-com- 
ponent of momentum in the absence of body forces can be written as 

-ap asxz arvz 
P (!+ ax a v )  by ax + (z + ,). (5) 

avx +v,-+vv,--z = -  

The continuity equation is 
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We now introduce five simplifying assumptions : 
(A) Flow is incompressible and steady. 

av, av, - + - = o  ax by 

Continuity reduces to 

and the %-component of momentum equation reduces to 

(7) 

(B) Non-Newtonian viscosity is considered to be a function of the rate of 
shear. This function is the tanh model. 

(C) The acceleration terms of the momentum equation are neglected be- 
cause viscous forces are large compared to inertia forces. 

(D) Since V ,  varies much more in the y-direction than in the x-direction, 
second derivatives of V ,  with respect to x can be shown to be small com- 
pared to second derivatives of V ,  with respect to y. 

(E) Pressure is constant in the y-direction. Therefore, dP/bx is also 
constant in the y-direction. 

From the above assumptions, the equation for the x-component of mo- 
mentum for a non-Newtonian fluid becomes 

where 1) is the non-Newtonian viscosity defined in eq. (1). 
after the subscripts on r will be dropped. 

tion E,  

Note that here- 

Integrating eq. (9) with respect to y for constant x, and utilizing assump- 

Y(&) bP = 7 = ?(dy) av, + C .  

Since the flow is symmetrical about the x-axis, 

Hence r(0) = 0 and C = 0. 
Nex-t we eliminate the variable y in eq. (10). From eq. (9), 

or 
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With eq. (lo), this becomes 

Integrating (11) across the gap from 7w to 7 and U to V,, and noting that 
dP/bx is constant through this interval, an expression for V ,  is obtained: 

(12) 

where U is the roller surface speed. 
The volume rate of flow at  a given location, x, can be expressed as 

It is convenient to integrate eq. (13) over 7. Introducing the derivative 
of eq. (10) and adjusting the limit transforms eq. (13) to 

Now, using eq. (12) for V ,  in eq. (14), the flow rate becomes 

and from eq. (lo), with y = h at  r = rtIi, 

rW = r;) h.  

For convenience, we introduce the following dimensionless form of x: 

Using the minimum gap Ho and the first term of the binomial expansion 
for the roller curvature, 

2 2  
h = Ho + G' 

Combining eqs. (17) and (18), 
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or 

1. 
h 

4 2 = H o -  
Substituting (19) for h in (16), 

Then, rewriting eq. (15) with (21), 

3163 

(20) 

A t  the point where the fluid leaves the roll surface, 21, the sheet thickness 
has been established as hl. At this point, rw must necessarily go to 0, caus- 
ing bP/bx to become zero across the gap, eq. (21). Consequently, 7 must 
be zero for all y to satisfy eq. (lo), and we deduce that the velocity is uni- 
form across the gap and necessarily equal to the wall speed U cos 81 = U. 
The volume flow can be expressed as 

Q = 2Uh1 (23) 

or 

Q ill = -. 
2u 

If we identify the value of 4 at 21 as 41, then 

or, in the form of eq. (20), 

Introducing eq. (24) into eq. (26), 

(24) 

If eq. (27) is inserted into eq. (22) at 4 = 41, it is evident that the integral 
term on the right-hand side is zero at z = XI. This is significant. While it 
is evident that at 21, 7 = rW and the integral disappears, it must be noted 
that a t  xl, bP/bx is also zero. 

Using eq. (27) to express Q, eq. (28) can be written as 

c! = 2UHO(l + h2). (28) 
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Combining eq. (28) with (22) to eliniinate &, 

or 

Equation (30) comes from eq. (29) by the following relation (see, for ex- 
ample, reference,’ pp. 234-235) : 

1 r f ( r ) d r d T  = s,” 7 f ( ~ ) d 7 .  

Proof: I = c [ f ( r ) d r d r  = c [ c f ( ~ ) d ~  - l f ( r ) d r ]  dr  

= s,” [s ,”f(~)d~]  dr  = s,” I f ( i ) d ~ d ~  

= 7, c f ( r ) d r  - s,” l f ( r ) d r d r .  

It is possible to transform the double integral into a single integral by 

Let 
using the convolution theorem :4 

d r w )  = c (Tw - T)f(T)dT; 

then 

With this, t,he expression I is 

The tanh fluid model, stated in eq. (3), can now be entered in eq. (30) 
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or 

Using the expression in eq. (21) for r,, 

k 

7 2  

A - B tanh -- 

bP bP 

Using eq. (17), we can write 

Consequently, 

k 

7 2  

A - B tanh - 
- = 1/2RHo 
dP 
d4 

(35) 

From the above equations, we cannot expect to obtain a closed form solu- 
tion for maximum pressure and 4 1 .  However, given that the pressure is 
zero at  the edge of the reservoir (4 = 4 H )  and at  the exit from the rollers 
(4 = +I), and, as previously stated, the pressure reaches a maximum a.t 4 1 ,  

then 

or 

Equation (36) makes possible the numerical solution presented in the 
next see tion. 

SOLUTION 

The numerical solution is accomplished by choosing the limit 4 1  of eq. 
(36), making an initial guess for 4H, and iterating + H  by modified false posi- 
tion until eq. (36) converges to zero. This would be a reasonably straight- 
forward process except for three major problems. First, as shown in eq. 
(33), 6P/6x equals a function containing an integral with the same 6P/6x 
in the upper limit. Second, this integral within an in- 
tegral must be solved for each iteration step. Finally, I is a function of T 

and must be solved for in each step of the integration in eq. (33). 

It is not separable. 
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Fig. 5. Iteration loops used for the computer solution. 

The problem is depicted schematically in Figure 5. Box E shows the 
conditions of the ultimate solution, the correct limit 4H for each selected 41. 
The 41)s were equispaced in a range of interest, as determined by a previous 
power law solution, corresponding to values of hl/Ho between 1.0 and 1.24. 
It is important in terms of computer time to make a close guess of 4H for 
each 41, and this was accomplished by fitting a third-order least-squares 
polynomial to hl/Ho versus h/Ho obtained from the analysis of a power law 
model by Branzinski et al.6 

Integration in box E is done with a single application of four-point Gauss- 
Legendre quadrature in the main drive program called QUAD. With $1 
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and # H  determined, the four values of # at  which dP/d+ must be evaluated 
are known and correspond to the roots of the Legendre polynomial of degree 
four.6 

At each of these four values, the integral in box B must be solved by call- 
ing subroutine SIMPSON. Again, Gauss-Legendre quadrature is used. A 
guess of bP/bx is made in order to get an initial value for the uppcr limit. 
With the range of integration known in terms of 7, the four roots of the 
Legendre polynomial yield the four values of 7 a t  which the integrand is to 
be evaluated in the quadrature. 

For each 7,  a value of + is guessed and set in the right-hand side of eq. (3). 
as given in box A. The iteration 
proceeds by putting the new value of y on the right and repeating the process 
until the left and right sides differ by less than 1%. This process of suc- 
cessive approximations is carried out in subroutine SUCCA. 

Note that guesses are made in boxes E through A and now begin to con- 
verge in cascading subroutines from inside out, from boxes A through 
E. One should pay particular attention to this subroutine structure as 
depicted in the bottom of Figure 5 .  

With the four integrands available, the quadrature integration in sub- 
routine SIMPSON can now be carried to completion. With box B eval- 
uated, the right-hand portion of the expression in box C can be calculated, 
and the value of bP/dx compared to the assumed value. Subroutine 
DPDX carries this successive approximation iteration forward until the 
error between the left and right sides of the expression in box C is less than 
1%. A curve pivoting procedure is incorporated into the iteration to ac- 
celerate convergence. 

With the proper bP/bx for each 4 and the expression in C determined, it 
is a simple matter to obtain dP/d# with eq. (35) (box D). 

Control is now returned to QUAD for the last, step in the calculation loop, 
the iteration of the expression in box El eq. (36). As previously stated, 
QUAD employs a, four-point Gauss-Legendre quadrature. Iteration of 
# H  is also carried out in this program, and each time a new #H is tried, the 
entire loop is repeated until the expression in box E is zero using a 3% 
error criterion. (That is, the entire subroutine cascade hierarchy is em- 
ployed: QUAD to DPDX to SIMPSON to SUCCA and back again in re- 
verse order.) As the value of 4H is known approximately, this is not as 
difficult as it might in initially appear. Furthermore, once +1 is chosen, it 
is not necessary to recompute the first integral in box E as it does not in- 
volve # H .  

A comment should be made here regarding a possible singularity in the 
expression in box C for bP/bx. When # = *#I, the denominator on the 
right goes to zero. It was noted in the discussion following eq. (27) that 
bP/bx + 0 as # + k#1. That is, the integral in box C goes to zero faster 
than the denominator #z - #I2 as # + *#I. This also indicates that there 
is a pressure maximum or minimum at  *#1. Based on physical reasoning 
and results for Newtonian flow, we assume that the curve reaches a maxi- 
mum a t  # = - +I and goes to the minimum (zero pressure) at + = + $1. 

This is solved for the new + on the left. 
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We have established a value of t$H for each $1. We can calculate the gap 
width at  =k& which will be the thickness of the film at  exit. Assuming 
this to be the final film thickness, hl can be found from eq. (26), 

hl = H0($l2 + 1) 

21 = $11/2RHO. 
and with eq. (25), 

Reservoir height H can be found using $ H  in the same way: 

H = H O ( 4 H 2  + 1) 

and 

28 = $ffdm* 
Maximum pressure can be found as the value of either integral in eq. (36) 

(box E). That is, 

As these integrals were evaluated in the calculation process, it is a simple 

Listing of programs and subroutines QUAD, DPDX, SIMPSON, and 
matter to  print out the result for each $1. 

SUCCA are not presented in the paper but are available in reference 7. 

RESULTS 

From the programs outlined in the last section, output was produced us- 
ing constants for the hyperbolic tangent model for the three polymers of 
Figure 3. The geometry used is shown in Figure 2, where Ho = 0.0016 in., 
R = apparent roller, radius = 0.5 in., and U varies from 5.0 in./sec to 50.0 
in./sec. This output, involving three or more roller speeds for each poly- 
mer, has been presented in the graphs of Figures 6 through 11. 

For each polymer, there me curves giving the dimensionless ratio of the 
exit height hl to the gap between rollers, Ho, &s a function of the reservoir 
height ratio H/Hn for a family of roller surface speeds, U (Figs. 6,7,  and 8). 
A second set of curves shows the relation between the maximum pressure, 
lb-ft/in.2 versus the reservoir height ratio for the three polymers a t  Beveral 
speeds (Figs. 9, 10, and 11). 

On examining the solutions for exit heights graphed in Figures 6,7,  and 8, 
it is evident that when the ratio of reservoir height to gap (H/Ho) exceeds 
20, the effect of increasing the reservoir height on the exit thickness is small. 
This suggests that the maximum practical thickness of a calendered sheet is 
controlled more by roller gap than by reservoir height. 

These solutions are very close to those calculated in previous work in- 
volving power law f l ~ i d s , ~  with this exception: these new calculations show 
significant changes in the H-versus-hl curves as the roller surface speed is 
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Fig. 6. Exit height of sheet for fluid A. 
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Fig. 7. Exit height of sheet for fluid B. 
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Fig. 8. Egit height of sheet for fluid C. 
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Fig. 9. Maximum calendering pressure for fluid A. 
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changed. Power law solutions show no such changes. They depend only 
on power law slope for a given geometry. 

Maximum pressures, graphed in Figures 9, 10, and 11, were strongly af- 
fected by speed and viscosity. As t.he roller surface speeds increased from 5 
in./sec to 50 in./sec, the maximum pressure.s increased two to three times 
for the fluids Considered. Maximum pressures for fluid A were nearly 
double those a t  the same conditions for the less viscous fluid C. 

A NOTE ON THE NUMERICAL SOLUTION 

When you consider the problem which has been solved here, your first 
reaction is that you will require an explicit shear stress distribution or ve- 
locity profile. Using the four-point quadrature the problem was one of find- 
ing shear rates at a few discrete values of the shear stress. These values of 
shear stress are known as soon as the local pressure gradient is assumed. 
Then the problem is to cause the pressure gradient created by the shear 
stresses to match the pressure gradient which established them. Conse- 
quently, it is not necessary to generate a functional shear stress distribution 
across the gap. 
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Fig. 12. Two-dimensional model for calendering. 

A second point is the temptation to integrate pressure along the xdirec- 
tion by open integration formulae, “shooting” pressure curves until a t  4 = 
41, P = 0. While this suggests the advantage that a pressure distribution 
would be found along the calendering surface, it presents certain problems. 
Not only would it require the it.eration to validate guesses of 4H but it 
would require repeated iteration of the pressure at  +I. The present method 
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employs closed form integration forcing pressure to match the boundary 
conditions. 

FUTURE EXTENSION OF WORK 
The primary follow-up of this analysis should be an experimental evalua- 

tion of the results. The instrumentation for such a project was considered 
beyond the scope of the work. 

The solutions presented here should be useful not only in predicting 
calendered sheet thicknesses and roller power required but also in calculat- 
ing the relationships among roller deflections, roller speed, and fluctuations 
in reservoir feed within a control loop designed for maintaining uniform exit 
height. A digital simulation of a calendering system could be written to 
show the feasibility of such a control loop and would be a valuable design 
tool. 

Two natural extensions of this work are the prediction of roller pressure 
distribution as described in the preceding section and treating the two-di- 
mensional case. In this case, the flow occurs parallel to the roller axes as 
well as  through the rollers. This can be done by dividing the nonuniform 
reservoir into sectors of uniform width as illustrated in Figure 12. Then, 
by incrementing time, spread patterns of thickness versus the x- and y-co- 
ordinates could be predicted. 

In the future, rheological problems involving more sophisticated models 
such as those of Oldroyd,s Carreau,g and others might be solved numeri- 
cally. 
tion. 
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It is hoped that this work represents a significant step in that direc- 

Nomenclature 
fluid constant, see eq. (3) 
fluid constant, see eq. (3) 
roller separation 
fluid thickness a t  exit 
roller separation (gap) a t  reservoir 
minimum roller separation 
fluid constant, see eq. (3) 
number of data points to be fit by curve 
fluid constant, see eq. (3) 
pressure 
flow rate 
roller radius 
time 
roller surface speed 
distance from roller nip along axis of symmetry 
x at  fluid exit 
x a t  t,ip of reservoir 
distance from axis of symmetry 
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shear rate 
apparent viscosity 
Newtonian viscosity 
density 
shear 
shear at roller surface 
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